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Executive Summary 
In this deliverable we address the first objective of WP4: “developing advanced 
models of generic, elastic data analytic services for Big Data, in order to analyze 
the aggregated data for predictions and recommendations”. In particular, we tackle 
the problem of defining the advanced models of generic, elastic data analytic 
services for Big Data. To this end we present the Micro Data Analytic Services 
(MiDAS) architecture and data analytics model. Moreover, we propose a solution to 
simplify the development of value-added data analytic services in order to facilitate 
exploiting the exposed data. To achieve this we developed a novel programming 
model for MiDAS, specifically focusing on the realtime data processing and 
streaming data. 
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1 Introduction 
The present document describes the deliverable D4.1 of Task 4.1 “Data analytics 
techniques” in WP4 “Models of data analytic services”. Generally the main objective 
of WP4 is is twofold: First, we will develop advanced models for programming 
generic, elastic data analytic services for Big Data, in order to analyze the 
aggregated data for predictions and recommendations. Second, we will implement 
tooling support for developing such data analytic services in order to facilitate 
exploiting the normalized Smart City data and turning it into disruptive innovation 
building blocks, based on micro services.  

The purpose of Task 4.1 is identification, development and integration of Big Data 
Analytics techniques, which can be used to develop and execute value-added data 
analytics services and derive meaningful information from sensory data. Examples 
of such services could include predictive capabilities and recommendations in the 
context of the project pilots. 

In general, deliverable D4.1 focuses on introducing the relevant concepts and 
architecture for SMART-FI data processing facilities. More details are given in the 
following section. 

1.1 About this deliverable  
The main objective of this deliverable is to provide design methodologies and 
models for implementing unified Micro Data Analytic Services (MiDAS) (e.g., batch 
and real time processing functions), based on the state-of-art data processing 
architectures, frameworks and models, in order to enable generic, flexible 
interoperation with different data processing and analytics frameworks. Moreover, 
the focus of this deliverable is on providing real time stream data analytics 
programming models, which are an integral part of MiDAS model and SMART-FI 
platform.  

 

1.2 Document structure 
Section 1 introduces the document; Section 2 gives a short overview of the 
deliverable and its context in the SMART-FI platform; Section 3 presents relevant 
state-of-the0-art work; Section 4 outlines MiDAS architecture; Section 5 gives a 
detailed overview of  MiDAS real time data analytics programming model; Finally, 
Section 6 concludes the deliverable. 
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2 Deliverable Overview and Context  
2.1 Relation to the main work package objectives  
The main objective of WP4 is twofold: First, to develop advanced models of generic, 
elastic data analytic services for Big Data, in order to analyze the aggregated data 
for predictions and recommendations. Second, to implement tooling for developing 
the value-added data analytic services in order to facilitate exploiting the exposed 
data and turning it into disruptive innovation building blocks, based on micro 
services. 

In this deliverable we address the first objective of WP4. In particular, we tackle the 
problem of defining the advanced models of generic, elastic data analytic services 
for Big Data. To this end we present the MiDAS architecture and data analytics 
model. Moreover, we propose a solution to simplify the development of value-added 
data analytic services in order to facilitate exploiting the exposed data. TO achieve 
this we developed a novel programming model for micro data analytics services, 
specifically focusing on the realtime data processing and streaming data. 

2.2 Relation to other work packages 
Figure 1 illustrates the main dependencies of WP4. We will use the homogenized, 
aggregated data, developed in WP3, as the baseline for the models and techniques 
that will be developed as part of the WP4. The main outcomes of WP4 will be 
models and tools for developing elastic micro data analytic services, with a special 
focus on runtime service elasticity and governance concerns. In addition WP4 will 
provide example data analytic services (demonstrating the proposed model and 
tools) as well as an integration methodology for integrating micro data analytic 
services with service interoperability mechanisms (WP5). The outcomes of WP4 will 
be provided as inputs for the activities in WP5.  

 

 

Figure 1 Overview of main action points, dependencies and outcomes of WP4 
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2.2.1 Main action points  
In this deliverable we mainly focus on the following action points defined within the 
Task 4.1: 

• MiDAS architecture 
• Data Connectors 
• MiDAS realtime analytics programming model 

We discuss these action points in more detail in Section 4 and Section 5. 

3 State-of-The-Art in Big Data Processing and 
Analytics 

In this section, we consider related work containing research efforts and projects, 
at 
different levels, as regards the main functionality provided by SMART-FI: i) Data 
normalization, ii) Data analytics, and iii) Service orchestration. In particular, in this 
deliverable we present the state-of-the-art in the area of data analytics and 
processing. 
 
With respect to the data analytics, various underlying data processing frameworks, 
especially for streaming and batch analytics exist. Among the seminal papers, 
Agrawal et al. [1] and Cuzzocrea et al. [2] explored the possibility of running 
database management systems (DBMS) in a Cloud environment, concluding that 
there is not a one-size-fits-all solution, due to the trade-off between scalability and 
query expressiveness. The availability of huge amount of daily produced Smart City 
data fosters the exploration of new data analytics approaches which should simplify 
the ingestion, transformation, and consumption of data by possibly neglecting (or 
hiding) the complexity of managing a scalable and distributed processing system. 
Supported by concrete case studies, Hashem et al. [3] highlight the tight 
relationship that exists between Cloud computing and Big Data. The former 
provides the underlying engine that enables several classes of distributed data-
processing platforms (e.g., batch processing, stream processing), whereas the 
latter might utilize distributed and fault-tolerant storage technologies based on 
Cloud resources in order to simplify the management and processing of data. 
Moreover, some research efforts envision and conceive a conceptual architecture 
that tightly combines the requirement of data analytics and the potentialities of 
Cloud computing. It results 
a model named Cloud-based Analytics as a Service or Data Analytics as a Service. 
For example, Domenico Talia [4] discussed the complexity and variety of data types 
and processing power to perform analysis on large datasets. Therefore, he 
proposed three Cloud-based service models that support their execution: data 
analytics software as a service, where an analytic application or task is offered as a 
service, data analytics platform as a service, where analytic suites or frameworks 
are offered hiding the cloud infrastructure, and data analytics infrastructure as a 
service, where virtualized resources enable the storage and processing of Big Data. 
This idea is exploited also in other research papers, e.g., [5, 6], among which the 
one by Zulkernine et al. [6] presents a conceptual architecture for Cloud-based 
Analytics-aaS, which however includes only a preliminary implementation, lacking 
the details of how to process the massive dataset.  
 
Other research contributions focus more on the scalable execution of user-defined 
functions (UDF) among a large and distributed set of computing nodes, which can 
be acquired or released as needed, encompassing the on-demand resource principle 
of Cloud computing. Nowadays, two opposite approaches are commonly adopted: 
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batch processing and stream processing [7]. The former stores all the data, usually 
on a distributed file system, and then operates on them on the basis of different 
programming models, among which the well-known MapReduce. The latter 
processes all the data on-the-fly, i.e., without storing them, so it can produce 
results in a near real-time fashion. A plethora of frameworks is available to process 
the data following one or the other approach: examples of batch processing 
frameworks are Apache Hadoop1 (an open-source implementation of MapReduce) 
and Apache Tez2. Examples of stream processing frameworks are Apache Storm 
[8], Apache Flink3, IBM Infosphere [9], and Amazon Kinesis4.  
 
Finally, there have been several initiatives in European Union under 7th Framework 
Programme and Horizon 2020. The SUPERSEDE5 project proposes a feedback-
driven approach to the life cycle management of software services and applications, 
with the ultimate purpose of improving users’ quality of experience. Decisions on 
software evolution and runtime adaptation will be made upon analysis of end-user 
feedback and large amount of data monitored from the context. An integrated 
platform will articulate the methods and tools produced in the project. MARKOS6 
project uses data analytics techniques for the analysis of software sources, and the 
support to consume these data, migrated to a RDF/S repository and accessing 
through SPARQL Endpoints.  
 
Most of the presented solutions could be used to execute data analytics processes. 
However, there is a lack of tools to generate/accelerate elastic data analytics 
services that utilize these frameworks to handle large-scale data to offer new 
analytics under micro services models. Most of the time, the developer has to write 
all analytics functions, service interfaces and complex configurations for the 
runtime concerns. 

4 Architecture of Micro Data Analytics 
Services  

In this section, we provide an architectural overview of Micro Data Analytics 
Services (MiDAS). Moreover we discuss its main components and how MiDAS fits 
into the overall SMART-FI platform design. 

4.1 MiDAS Architecture and main design principles 
Generally, the main purpose of Smart City data analytics services is enabling  
transforming the city data into disruptive innovation building blocks for the Smart 
Cities of the future, based on micro services technologies. To this end, MiDAS 
facilities (which are an integral part the SMART-Fi platform) provide models and 
components that allow for developing and managing value-added data analytic 
services in Smart Cities. MiDAS purpose is twofold: First, it provides advanced 
models for programming generic, elastic data analytic services, in order to facilitate 
analyzing the aggregated data for predictions and recommendations. Second, it 
implements tooling support for developing and managing such micro data analytic 

                                         
1 http://hadoop.apache.org/ 
2 https://tez.apache.org/ 
3 https://flink.apache.org/ 
4 https://aws.amazon.com/kinesis/ 
5 https://www.supersede.eu/ 
6 http://www.markosproject.eu 
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services (which is being developed in the context of Task 4.2). In the remainder of 
this section, we mainly focus on the first aforementioned objective. 

Figure 2, shows the architecture overview of the micro data analytics services that 
are capable to support both online and offline Smart City data analytics in a uniform 
way. The overall data analytics architecture of SMART-FI platform is based on the 
Lambda architecture7. It comprises three main layers: Realtime Data Analytic 
Layer, Batch Analytics Layer and Fusion and Serving Layer. The most important 
components of the data analytics are the micro data analytics services (depicted as 
shaded boxes in Figure 2 include: 

• Batch view function, used to precompute static (slow-changing) partial 
aggregate views. 

• Stream transformation function, used to compute realtime window 
deltas (realtime delta views). 

• Fusion function, used to combine partial aggregate with realtime delta 
views and serve the results proactively or on-demand, enabling push or pull 
based interaction.  

Subsequently, we describe these components in more details, mainly focusing on 
the Realtime Data Analytic Layer. The components depicted as dotted-line boxes in 
Figure 2 represent the computed data views. They are not directly exposed to users 
and serve as inputs to the Fusion functions. We tackle the problem of realizing the 
Fusion functions in the context of WP5. 

 

 

 

Figure 2 MiDAS Services Architecture Overview. 
 

In our platform the we provide a novel model for realtime data analytics, which 
treats the data streams as first class citizens. In general, there is one-to-one 
mapping between MiDAS and data streams. From architectural point of view an 
instance of MiDAS is a logical entity identified by an ID (or URI) and its model is 
characterized by the following main three elements: 

                                         
7 http://lambda-architecture.net/ 
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• Stream data: the sequence of events that constitutes the stream. Every 
new event is handled by the Stream Processing component that triggers the 
update of the downstream MiDAS, i.e., the streams in a dependent 
relationship with the current one. The events in a stream can be volatile or 
temporary stored. 
 

• Stream Transformation function: this is a stateless function defined by 
the user, which transforms the incoming events in new events, according to 
the contract definition. The  transformation function is automatically 
managed by the execution environment to support elastic scaling, runtime 
governance and QoS.  
 
 

• MiDAS contract: Generally, the contract defines the type of the stream and 
encapsulates its most important properties, such as operational mode (i.e., 
window-based, partition-based mode), side effects and SLAs. Therefore, 
MiDAS contract can be seen as complex data type in a type system, which is 
related to the data transformation function. 

In section 5, we discuss these concepts in more detail and give implementation 
overview. We specifically focus on the programming model perspective and how 
end users (e.g., developers) benefit from MiDAS model in practice. 

 

4.2 MiDAS in the context of SMART-FI platform 

4.2.1 SMART-FI platform overview 
In this section, we show how the MiDAS architecture and models fit into SMART-FI 
platform architecture. In addition, we clarify the architectural and functional 
connections/dependencies of MiDAS and the rest of the SMART-FI platform (see 
Section 4.2.3). 

The SMART-FI platform is the central component of the SMART-FI ecosystem that 
serves as one of the main building blocks and a cornerstone for developing a 
sustainable SMART-FI ecosystem. It enables developing, managing and 
interoperating Smart City data analytics services, in order to facilitate exploiting 
Smart City open data and optimizing various city sectors, such as transportation, 
governance services and urban energy. The main objective of the SMART-FI 
platform is to allow horizontal integration of open city data and data analytics 
services by providing a set of generic component and mechanism that will enable 
development of higher-level Smart city applications and services (see Figure 3 top). 

Figure 3 (bottom) depicts how SMART-FI platform is based on the FIWARE and it 
utilizes its several components. However, it goes one step beyond by developing 
generic components and mechanisms based on microservices technologies, in such 
a way that other Smart City platforms could seamlessly adapt and incorporate 
SMART-FI components to suit their needs. 

4.2.2  Core SMART-FI platform facilities 
At the SMART-FI platform facilities level (Figure 3), three layers represent the main 
components, as well as a Governance and Service Market Place. Each facility is 
capable to perform a set of processes to get its main goal. Here we describe briefly 
the main data flow between these components. Heterogeneous data sets are 
managed in the Data normalization facility. It generates data sets with access rules 
and a normalized schema, based on urban ontologies, which are stored in semantic 
data store.  
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These normalized data streams serve as the main input for and are used by the 
MiDAS. As described previously in Section 3, the MiDAS analytic model and services 
enable the development and management of data analytic services in Smart Cities, 
providing elastic data analytic services to analyses the aggregated data for 
predictions and recommendations.  

 

Figure 3  SMART-FI Platform Architecture Overview. 
 

Finally, MiDAS facility provides a set of functions and analytics data streams, which 
are consumed and orchestrated by Service orchestration facility. With the Service 
orchestration facility, mechanisms for deploying and integrating existing or new 
services and applications will be provided, obtaining applications (mashups of 
services) and creating a marketplace that considers the FIWARE Lab and third-
party applications. 

More details on the SMART-FI platform and its main facilities can be found in our 
book chapter8.In the following section, we describe the key components of SMART-
FI platform that represent main dependencies of MiDAS facility. 

                                         
8 Stefan Nastic, Javier Cubo, Malena Donato, Schahram Dustdar, Orjan Guthu. Mats Jonsson, Omer 
Ozdemir, Ernesto Pimentel, M. Serdar Yumlu. „Exploiting Aggregated Open IoT Data from Smart Cities 
in the Future Internet Society“.Springer Series, Internet of Things Technology, Communication and 
Computing, 2017. 
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4.2.3 Data Connectors & MiDAS functional dependencies 
SAMPAS to revise this section. 

 

5 Real Time Data Analytics Programming 
Model 

5.1 MiDAS Osmotic flow 
Although so far several smart Cities release their open-data as a static collection of 
data, it is clear that the rise of Edge computing pushes towards a more dynamic 
solutions regarding the Smart City platforms such as SMART-FI, where smart cities 
ever stronger share their data in real time as continuous open-streams. 

To overcome some of the limitations of current approaches w.r.t. real time data 
analytics (Section 2), we devise MiDAS Osmotic Flow, a new solution for Cloud-
supported Edge data analytics that enables to smoothly run data analytics 
applications on Edge and Cloud resources (i.e. Smart City platforms), which are 
seamlessly integrated following the Osmotic Computing principles [9]. To this end, 
Osmotic Flow comprises a novel stream analytics model which promotes Streams 
as First Class Citizens, and is designed to exploit the presence of scattered 
resources in a simple manner. The novel stream model enables simplicity, 
flexibility, and scalability of application development, hence supporting Smart City 
application designers. 

The main motivation for our programming model is efficient composition of data 
transformation functions. This means the MiDAS Osmotic Flow model should 
support the composition of data transformations, so to easily realize complex 
applications. Differently from most of the existing approaches, the composition of 
transformation functions should try to minimize as much as possible the impact on 
the network. To this end, Osmotic Flow should consider by design the possibility of 
composing data streams coming from multiple, public IoT devices and applications, 
thus promoting the principle of sharing and reusability. 

 

5.2  MiDAS programming model 
We propose a new approach for realizing real-time data analytics applications that 
considers stream as a first class citizen9. Our stream model allows the user to easily 
define new streams, which extract high value information from raw data, without 
worrying about low level concerns related to their runtime execution, such as 
resource allocation, streams deployment, elasticity, and governance. These 
operations are managed by the underlying framework, which takes care of the 
application execution.  

                                         
9 In this section we use terms Stream and „an instance of MiDAS“ interchangeably.  
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Figure 4 Entities composing a stream in the Osmotic Flow model 
 

In MiDAS Osmotic Flow, as depicted in Figure 4, a stream is a complex entity that 
shapes and moves an unbounded sequence of data between two endpoints. 
Specifically, an input endpoint receives data from an external data source or from 
another stream, whereas an output endpoint is used to emit data towards sinks or 
other streams. A stream is characterized by the following elements:  

• one or more data sources: a data source is an entity, potentially external to 
the system, that continuously generates events or data. For example, a data 
source can be an IoT device emitting temperature measurements or a 
service publishing notifications; 

• one or more sinks: a sink is a final information consumer, that is interested 
in receiving high-level information extracted from raw data. For example, a 
sink can be a dashboard for the application stakeholders;  

• a transformation function: it encapsulates the user-defined logic which 
manipulates (e.g., combines, filters, splits) incoming data so to produce new 
outgoing data. As such, it defines the high-level information carried by the 
stream. These data are transferred to other application components (i.e., 
sinks, streams) through the output endpoint of the stream; 

• a contract: it is a high-level configuration descriptor of the stream that, on 
the one hand, enables the framework to automatically manage the stream 
execution and, on the other hand, allows the user to customize the stream 
runtime in a simple yet effective manner. 

For the execution, the MiDAS runtime framework will need to encapsulate the 
stream in a self-contained entity, i.e., a MiDAS, which is then transparently 
managed and executed on the computing infrastructure (this is however subject of 
Task 4.2).  

5.2.1 Transformation Function 
Transformation functions are the only piece of code that has to be defined by the 
user, which encapsulate the data analytics logic. For an efficient execution, the 
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stream model requires transformation functions to be as scalable as possible, 
therefore the latter are either stateless or provide an explicit definition of their 
state. We distinguish between two kind of transformations: simple and batch.  

• A simple transformation is applied to every incoming data in parallel and 
produces zero, one, or more outgoing data. For example, a simple 
transformation realizes a streaming version of the map function of 
MapReduce: each incoming event is transformed in a key-value pair.  

• A batch transformation allows to collect a group of data before applying a 
transformation, which can produce zero, one, or more outgoing data. The 
group of data fully determines the function state, which can then be 
manipulated by the transformation. A batch of data can be determined 
according to two modes: window and window-and-key. A window-based 
batch transformation creates a time-based or count-based window of 
events, that have to be collected before running the transformation on the 
entire batch. For example, a batch transformation can computes statistics on 
temperature measurements of the latest 30 seconds. A window-and-key 
batch transformation is a special case of windowed transformation that has a 
finer granularity in selecting the data composing the batch. A classic 
example for a window-and-key transformation is the implementation of the 
word counter, which computes some statistics on elements with the same 
key (i.e., word). 

Simple transformations are stateless operations, whereas batch transformations 
provide an explicit definition of their internal state. This definition allows 
transformations to be side-effect free, i.e., they produce a deterministic outcome 
for a well-defined set of input data. This property enables the realization of highly 
scalable and distributable data analytics applications, because transformations can 
be managed with a very limited footprint.  

It is worth observing that, although the stream model encourages the definition of 
lightweight transformation functions, it does not prevent the user from developing a 
sophisticated data analytics logic. Indeed, stateful transformations can be 
developed decoupling and externalizing the operation state from the transformation 
function by leveraging on external storage or caching systems. 

5.2.2 Contract  
The execution framework is responsible for executing the streams and, as such, it 
automatically performs management operations, such as elastically scaling streams 
so to handle varying workloads. Without limiting resources that can be acquired as 
needed, under a pay-per-use model, the user may incur in high expenses when 
multiple resources are needed for a suitable stream execution. Leveraging on the 
contract, the user can customize and limit the way management operations are 
performed. The contract provides a high-level description of the stream 
configuration. It is conceptually divided in sections, each of which focuses on 
specific aspects of the stream runtime. We identify the following sections: 

• Placement: this section enables to customize the stream deployment over 
the distributed infrastructure. If no restrictions are provided, the execution 
framework can deploy a stream everywhere, thus the framework tries to 
maximize the utilization of Edge resources. Nevertheless, some streams 
might require different policies that, e.g., maximize the utilization of nearby 
resources or exploit centralized Cloud resources. These preferences might 
follow from non-functional requirements (e.g., execution cost) or from user-
defined choices. 

• Elasticity: at runtime, the execution framework elastically adapts the stream 
deployment so to guarantee the stream responsiveness in face of 
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unexpected workload variations. Nevertheless, unexpected loads can lead to 
high execution costs, which might be acceptable or not according to the 
application scenario. This section of the contract enables to personalize the 
way the framework elastically scales the streams, e.g., by indicating scaling 
strategies, scaling limitations, and resource limitations. 

• Governance rules: together with the previous sections, the governance rules 
enable to specify further restrictions regarding the stream deployment and 
adaptation. These restrictions are often related to security, privacy, or law 
concerns. For example, a governance rule can exclude every edge resource 
belonging to a specific geographical region or can require to encrypt the 
exchanged data, so to meet stringent law restriction.  

• QoS requirements: this section expresses non-functional properties that the 
framework should meet during the stream execution, so to obtain a desired 
quality level. For example, requirements can restrict the maximum stream 
latency or minimum stream throughput.  
 

5.2.3 Public and Ephemeral Streams 
A stream can be ephemeral or public. An ephemeral stream is a special kind of 
stream that exists only if a sink is (directly or indirectly) interested to information 
coming from this stream. An indirect interest is manifest when one or more streams 
lie in between the stream and the final information consumer (i.e., sink). Being 
ephemeral, the existence of the stream depends on the presence of (direct or 
indirect) interested sinks and its scope is restricted within the same application, 
i.e., it can be used only by user-defined transformations running within the same 
application that contains the stream. A public stream is a globally available stream 
and, as such, can be used by any user. Examples are events generated by public 
data sources, such as weather or traffic monitoring stations. Public streams exists 
independently from the presence of interested consumers.  

5.2.4 Streaming MiDAS Application 
In the stream model, the transformation function is the only segment of code 
defined by the user. To enable its management, the transformation function is 
wrapped together with the contract so to create a MiDAS instance. It is then 
automatically executed by the underlying runtime framework.  

In this model, a data analytics application results from the composition of multiple 
streams, which collaborate to extract valuable information from raw data, emitted 
by possibly distributed data sources. In an application, multiple streams can be 
arranged in pipelines or in parallel branches that, ultimately, reach final information 
consumers (i.e., sinks). A pipeline is a sequence of streams, where each stream 
builds on the output of the previous one, e.g., to filter or enhance the informative 
value of data. Parallel branches are exploited to concurrently perform multiple task 
on the same data (e.g., multiple aggregations of measurements). The user 
expresses the composition of streams by bonding together the endpoints of 
multiple streams. Then, the underlying framework deals with the coordination and 
the concurrent execution of the streams as well as the propagation of data between 
their transformation functions. 

More details on the presented programming model can be found in our journal 
publication10. 

                                         
10 Matteo Nardelli, Stefan Nastic, Schahram Dustdar, Massimo Villari, and Rajiv Ranjan. "Osmotic Flow: 
Osmotic Computing+ IoT Workflow." IEEE Cloud Computing 4, no. 2 (2017): 68-75. 
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6 Conclusion 
This document provides basic information on the current progress in Task 4.1 of 
WP4. It introduced Micro Data Analytics Services (MiDAS) model and MiDAS 
preliminary architecture. Presented MiDAS facilities represent an integral part of 
the SMART-Fi platform and provide models and components that allow for 
developing and managing value-added data analytic services in Smart Cities. In 
this deliverable we mainly focused on MiDAS’ support for programming generic, 
elastic data analytic services, in order to facilitate analyzing the aggregated 
data for predictions and recommendations. Furthermore, we presented MiDAS 
realtime analytics programming model intended for online stream analytics.  
Among other things, our programming model enables efficient composition of 
data transformation functions. Hence it facilitates development of complex 
Smart City applications, e.g., for predictions and recommendations, by reliving 
the Smart City application developers from much of the currently faced 
development burden, such as explicate state management, operator placement 
and runtime concerns. Finally, we have outlined a coherent picture of MIDAS 
facilities in the context of larger SMART-FI platform, by elaborating on its main 
dependencies on other SMATRT-FI components, as well as its main outputs that 
underpin higher-level components of the SMART-FI platform. 
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